The Keys to a Successful Data Design Process

Scott Murray
@alignedleft
alignedleft.com
Scott Murray
Assistant Professor
University of San Francisco
Design is a process, not a product.
Design(ing) is a process, not a product.
Engineering is a process, not a product.
Design is a process, not a product, so you can't see it or point to it.
Although my thesis process revolved primarily around one major project (Practice) and a minor one (Cheeky), these projects cannot be understood in a vacuum, as they were preceded by so many other projects. All of my prior projects at DMI have influenced my thesis projects, so I have elected to include descriptions of the most relevant ones here.

Data visualization has been an important theme in my work, and I discuss several projects, ranging from Search Explorer, an interactive tool for voyeuristic exploration of web search queries, to Relationship Visualizer, a tool for visualizing connections in network data. My iTunes Library Visualization was also a valuable learning experience, as was the BART Trains Visualization, which taught me that innovative designs are not necessarily successful designs. I briefly explore how data might sound—call it data auralization—with two projects, Audible Particles and Aural Data Plot.

With Dictionary Words and Questions & Answers, I explore elements of interactive, nonlinear narrative structures, to varying degrees of success. The Gesture Project and ASCII Photo Booth introduced me to the engagement potential of visual mirroring. Anticipation Study, my very first project created with Processing, continues to inform my thinking about how to communicate without words, and how to imply what is not yet seen.

In the pages that follow, I document and reflect on my personal process of engagement with dynamic media, concluding with in-depth analyses of my thesis projects. By the end, I hope to have shared the most pertinent and valuable insights and discoveries made during this journey at DMI.

My hope is that this document will be accessible, enjoyable, and valuable for anyone interested in design and interactivity.
Designer person → Design(ing) process → Designed product → Outcome result

(hopefully the intended one!)
Data design is a specific kind of design process.
DATA DESIGN

Any design process that is heavily informed by data, such that the output of the process (designed product) changes significantly when the data informing the process change.
DATA DESIGN

Any design process that is heavily informed by data, such that the output of the process (designed product) changes significantly when the data informing the process change.

DATA VISUALIZATIONS

Visual solutions to data-driven problems
DATA DESIGN FIRMS

The OCR

Periscopic

Stamen
Billionaires

The New York Times

Bloomberg Visual Data

National Geographic
Some Luminaries in Kindred Britain

Kindred Britain
Q: How do they do it?
Q: What data design process results in the most successful outcomes?
Data → Outcome
Q: What data design process results in the most successful outcomes?
Q: What data design process results in the most successful outcomes?

A:
Q: What data design process results in the most successful outcomes?

A: It depends.
Some factors on which “it depends”:

- Team size
- Team expertise
- Project goals
- Data availability
- Output medium
- Time available
- Budget available
- Tools available
Process Maps That Attempt to Clarify the Complexity of All This
Interaction by typing successive numbers meant that the colors had to be modified in the visual refinement step to show a slow transition as points in the display are added or removed. This helps the user maintain context by preventing the updates on-screen from being too jarring.

![Diagram showing the seven stages of data visualization: acquire → parse → filter → mine → represent → refine → interact](image)

Figure 1-12. Interactions between the seven stages

The connections between the steps in the process illustrate the importance of the individual or team in addressing the project as a whole. This runs counter to the common fondness for assembly-line style projects, where programmers handle the technical portions, such as acquiring and parsing data, and visual designers are left to refine and interact in a separate stage of the process. Consequently, communication and coordination between these fields is often an issue.
Figure 10.59 Moritz Stefaner’s project workflow. (See the interview for an explanation.)
What data do you have?

None or next to nothing

Best data ever

What do you want to know about your data?

Don't know yet

(Specific question)

What do you see and does it make sense?

Find related data

New questions arise

Bar chart

Pie chart

Treemap

Line plot

Scatterplot

What visualization methods should you use?

Explore different dimension

Process diagram, Jeff Heer, University of Washington
A data journalism workflow, Mark McCormick with Simon Rogers, 2013.
A data journalism workflow, Mark McCormick with Simon Rogers, 2013.
Internet connection to the browser. My change to the structure of the data allows the points to appear slowly, as they are first read from the data file, employing the data itself as a "progress bar".

Interaction by typing successive numbers meant that the colors had to be modified in the visual refinement step to show a slow transition as points in the display are added or removed. This helps the user maintain context by preventing the updates on-screen from being too jerky.

Acquisition

Cleaning

Integration

Visualization

Modeling

Presentation

Dissemination

Figure 16-29: Moritz Stefaner's project workflow (See the interview for an explanation).

The answer to each question depends on the answers that come before, and it's common to jump back and forth between questions. As shown in figure 4.1, it's an iterative process. For example, if your dataset is only a handful of observations, this limits what you can find in your data and what visualization methods are useful, and you won't see much.
Interaction by typing successive numbers meant that the colors had to be modified in the visual refinement step to show a slow transition as points in the display are added or removed. This helps the user maintain context by preventing the updates on-screen from being too jarring.

![Diagram showing the seven stages: acquire, parse, filter, mine, represent, refine, interact.](image)

Figure 1-12. Interactions between the seven stages

The connections between the steps in the process illustrate the importance of the individual or team in addressing the project as a whole. This runs counter to the common fondness for assembly-line style projects, where programmers handle the technical portions, such as acquiring and parsing data, and visual designers are left to interpret the output. Integration of these fields is a great interaction.
Decisions, decisions, decisions...
Clarify What & Why

Explore & Sketch

Define & Produce
Expertise is the informed capacity to make decisions.
Q: What expertise, exactly, do we need?
Q: What expertise, exactly, do we need?

A:
Q: What expertise, exactly, do we need?

A: It depends.
EXPERTISE NEEDED FOR DATA DESIGN
EXPERTISE NEEDED FOR DATA DESIGN

- Visual Design
- Data Fluency
- Domain Expertise
- Curiosity

- Self-awareness
- Non-defensiveness
- Patience
- Coding
- Writing
- Logic
- Statistics
- Scientific Method
- Visual Perception
- Cognitive Science
- Computer Science
- Visual Arts
- Web Design
- UI/UX
- Design Process
- Architecture
- Psychology
- Graphic Design
- Illustration
- Journalism
- Mathematics
- Cartography
- History
- Empathy
- Logic
- Statistics
- Writing
- Art History
- Business
- Management

Expertise includes:
- Psychology
- Journalism
- Computer Science
- Cognitive Science
- Visual Perception
- Scientific Method
- Statistics
- Logic
- Writing
- Visual Arts
- Web Design
- UI/UX
- Design Process
- Architecture
- Mathematics
- Cartography
- History
- Empathy
- Logic
- Statistics
- Writing
- Art History
- Business
- Management
Acquire Parse Filter Mine Represent Refine Interact
More people with more skills working more closely together making more of the right decisions more often.
PROCESS MAPS FOR BIG-PICTURE GUIDANCE

more expertise for better decisions

better communication for faster iteration
What about your process?
Data Vis Process

If you practice data visualization — broadly defined — then I'm interested in your process. Share your experiences here, and I hope to synthesize the responses into some sort of cohesive taxonomy of process. I suspect our processes are quite different (by person, team, project, and context), but there may also be similarities. More importantly, we probably have a lot to learn from each other.

In the spirit of open-sourcing our processes, some of the data collected here will be shared back with the community. You may choose to answer anonymously, and I will ask for permission to share this information below. By completing this survey, you're giving me permission to use this information in my own research, and to quote from it publicly (but anonymously) in workshops, presentations, lectures, and written work.

All information is optional, but appreciated!

Scott Murray
Assistant Professor, Design
University of San Francisco
http://xarts.usfca.edu/~shmurray/

Formal Title
What title is on your business card?

Layperson Title
What name do you use for your occupation when talking to people outside your field?

Dinner Party Scenario
At a dinner party, what do you say when the other guests ask what you do?
What title is on your business card?

What name do you use for your occupation when talking to people outside your field?

At a dinner party, what do you say when the other guests ask what you do?

How many people are in your organization / company / firm?

How many people are in your immediate team / group / department?

Please describe your data visualization process.

What kinds of expertise do you personally contribute during this process?

What kinds of expertise are contributed by others engaged in the process?

For whom do you produce work?

Who is the ultimate audience for your visualizations?

About how often do you feel your visualizations are successful?

For you, what constitutes "success"?

What other questions should I have asked here?
For you, what constitutes "success"?

“Client is happy (firstly); design is clean, code doesn't suck from my perspective, vis shows something interesting or allows people to find interesting things in it.”

“There was nothing more to improve given the constraints.”
First steps in the data visualization process:

“Collect raw data.”

“Develop [a] hypothesis about the problem.”

“Receive the data from client. Sit with client and make sure data is fully understood.”

“I create folders for any idea that pops into my head. When I have time I dig into one and see if I can find a data set that fits my needs.”

“Have questions to answer with data. All my projects start by having at least one question and some data.”

“I usually start with a question. What do I want to know? What do I want to figure out? It usually starts with some curiosity…”

“ESTABLISH THE VISUALISATION’S PURPOSE”
1. What problem are we trying to solve?

2. What question(s) do we have?

3. What data do we have?

4. What (additional) data would we need to: solve the problem? answer the question?
Data Vis Process Research

github.com/alignedleft/data-vis-process

> take the survey
> read survey responses
> related reading list
> tons of links on process
Data Vis Process Research

github.com/alignedleft/data-vis-process
Hugh Dubberly
“What can Steve Jobs and Jonathan Ive teach us about designing?”

1. Whole systems thinking
2. Deep, broad teams
3. Design conversations
“But only one form of conversation leads to a partnership, to deep trust, and ultimately to innovation and a sustained period of good design. Such conversations are principally about goals — about beliefs, about values, and about quality…”

– Hugh Dubberly
The Keys to a Successful Data Design Process

Scott Murray
alignedleft
alignedleft.com
github.com/alignedleft/data-vis-process