<table>
<thead>
<tr>
<th>A</th>
<th>Illness / Disease</th>
<th>Climatic Conditions / Agent Responsible</th>
<th>Medication: Categories</th>
<th>Medication: Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun-burn</td>
<td>Sun exposure</td>
<td></td>
<td>Cortisone creams</td>
<td>Hydrocortisone</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>Antihistamines</td>
<td>Diphenhydramine</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>Analgesics</td>
<td>Ibuprofen, Acetaminophen, Aspirin</td>
</tr>
<tr>
<td>4</td>
<td>Actinic keratosis leading to squamous cell carcinoma</td>
<td>Sun exposure</td>
<td>Chemotherapeutic antimetabolite</td>
<td>Fluorouracil</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Insecticides</td>
<td>Permethrin, Benzyl benzoate</td>
</tr>
<tr>
<td>6</td>
<td>Scabies</td>
<td>Poor personal hygiene</td>
<td>Anthelmintics (severe cases)</td>
<td>Ivermectin</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>leading to infestation by</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Impetigo (secondary infection due to Scabies)</td>
<td>Infection with Streptococcus or Staphylococcus, including MRSA</td>
<td>Antibiotics</td>
<td>Fusidic acid, Mupirocin (topical), Flucloxacillin, Erythromycin (oral)</td>
</tr>
<tr>
<td>9</td>
<td>Conjunctivitis</td>
<td>Poor personal hygiene</td>
<td>Fluoroquinolone Antibiotics (Bacterial)</td>
<td>Levofloxacin, Gatifloxacin</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>leading to infestation by</td>
<td>Antihistamines (Allergic & Viral)</td>
<td>Epinastine, Olopatadine, Axelastine</td>
</tr>
<tr>
<td>11</td>
<td>Trachoma (AKA Quiet Disease)</td>
<td>Chlamydia trachomatis</td>
<td>Long term / repeated infestation by Chlamydia trachomatis</td>
<td>Tetracycline, Azithromycin</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Cardiovascular Disease</td>
<td>Cold temperatures leading to increased blood pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>Statins</td>
<td>Atorvastatin, Rosuvastatin</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>Salicylates</td>
<td>Aspirin</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>Antiplaletes</td>
<td>Ciloprid</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>Vasodilators</td>
<td>Nicorandil</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>Prophylactic treatment - see Cardiovascular disease above</td>
<td>See Cardiovascular disease</td>
</tr>
<tr>
<td>19</td>
<td>Respiratory Infections: Coughs, colds and influenza</td>
<td>Cold temperatures leading to increased blood pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>Statins</td>
<td>Atorvastatin, Rosuvastatin</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>Salicylates</td>
<td>Aspirin</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>Antiplaletes</td>
<td>Ciloprid</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>Vasodilators</td>
<td>Nicorandil</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>Anticoagulants</td>
<td>Warfarin, Aspirin, Clopidogrel</td>
</tr>
<tr>
<td>25</td>
<td>Respiratory Infections: Pneumonia</td>
<td>Cold temperatures increasing susceptibility to bacterial or viral infection</td>
<td>Antibiotics</td>
<td>Erythromycin, Trimethoprim, Levofloxacin, Ampicillin, Vancomycin</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td>Corticosteroids</td>
<td>Prednisolone, Hydrocortisone (acute), Budenoside, Fluticasone propionate (chronic)</td>
</tr>
<tr>
<td>27</td>
<td>Respiratory Illness: Asthma</td>
<td>Aeroallergens (pollen, mould spores, pollution)</td>
<td>β-antagonists</td>
<td>Salbutamol, Terbutaline (acute), Formoterol, Salmeterol (chronic)</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td>Bronchodilators</td>
<td>Theophylline (acute)</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td>Leukotriene receptor antagonists</td>
<td>Montelukast, Zafirlukast (chronic)</td>
</tr>
<tr>
<td>30</td>
<td>Respiratory Illness: Allergic Rhinitis (AKA Hay Fever)</td>
<td>Aeroallergens (pollen, mould spores, pollution, ozone)</td>
<td>Corticosteroids</td>
<td>Fluticasone</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td>Decongestants</td>
<td>Pseudoephedrine</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td>Antihistamines</td>
<td>Loratadine</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td>Leukotriene receptor antagonists</td>
<td>Montelukast</td>
</tr>
<tr>
<td>34</td>
<td>Atopic dermatitis (AKA Eczema)</td>
<td>Aeroallergens (pollen, mould spores, pollution) via association with Asthma or Allergic Rhinitis</td>
<td>Corticosteroids</td>
<td>Hydrocortisone, Fluandrenolone</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td>Immunosuppressants, including calcineurin inhibitors</td>
<td>Pimecrolimus, Tacrolimus, Ciclosporin</td>
</tr>
<tr>
<td>36</td>
<td>Physical Injury</td>
<td>Floods</td>
<td>Antibiotics (for co-occurring infections)</td>
<td>Fusidic acid, Neomycin Sulphate</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td>Analgesics</td>
<td>Morphine, Codeine (opoid analgesics for severe pain)</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td>Antibiotics</td>
<td>Gatifloxacin, Flucloxacin, Ciprofloxacin</td>
</tr>
</tbody>
</table>
WELLBEING AND THE ENVIRONMENT:
POSSIBLE LINKS BETWEEN CONSERVATION ACTIVITIES AND HEALTH

ENVIRONMENTAL MODERATORS
- TYPE
- QUIETNESS
- DEGREE OF ENVIRONMENTAL CHANGE
- FEATURES
- CONTEXT (AWAY / NEAR)

ACTIVITY MODERATORS
- TYPE OF ENGAGEMENT
- ENGAGEMENT ROUTE(S)
- OTHER PARTICIPANTS
- EXPECTATIONS
- TYPE OF PROGRAMME (AIMS, OBJECTIVES, ETC.)

PERSONAL MEDIATORS
- MOTIVATIONS
- SOCIAL IDENTITY
- FULFILMENT
- EXPECTATIONS
- PERSONAL IDENTIFICATION
- PHYSICAL ABILITY
- PERCEPTIONS OF SELF

MECHANISM MODERATORS
- CHANGE IN SOCIAL / GROUP COHESION
- ACHIEVEMENT(S)
- TYPE OF ENVIRONMENTAL CHANGE
- DEVELOPMENT OF SOCIAL CAPITAL
- ENJOYMENT
- ACTIVITY TYPE / INTENSITY

Mental Health
- SPIRITUALITY
- CHANGE IN PERSONAL / SOCIAL IDENTITY
- BEING AWAY FROM STRESSORS
- RESTORATION / RECUPERATION
- ENJOYMENT / PLEASURE
- GOING INTO NATURE
- SELF-CONFIDENCE
- PHYSICAL ACTIVITY

Social Function
- QUALITY OF LIFE
- SOCIAL CONTACT
- KNOWLEDGE ACQUISITION

Physical Health
- PHYSICAL HEALTH QUALITY
- OTHER ACTIVITIES

Potential Mechanisms of Change / Process Outcomes
Seeing is Believing

Randomised, controlled study

Measuring impact of visualisation on knowledge and risk perception

Quota sample, using online market research panel (926 participants)
Project team

Dr Will Stahl-Timmins
Associate Research Fellow: Visual Data Presentation
European Centre for Environment and Human Health

Dr Mathew White
Lecturer in Risk & Health
European Centre for Environment and Human Health

Dr Sabine Pahl
Lecturer in Psychology
University of Plymouth, School of Psychology

Anthony Lilley
Chief Creative Officer and CEO
Magic Lantern

Prof Michael Depledge
Professor of Environment and Human Health
Peninsula College of Medicine and Dentistry
Working Group II Report

impacts, Adaptation and Vulnerability

Chapter 8

Human Health
waves can still cause substantial increases in mortality if electricity or heating systems fail. Cold waves also affect health in warmer climates, such as in South-East Asia (EM-DAT, 2006).

8.2.1.3. Estimates of heat and cold effects

Methods for the quantification of heat and cold effects have been rapidly developed (Brage et al., 2002; Curriel et al., 2002; Aosong et al., 2004), including the identification of medical, social, environmental and other factors that modify the temperature–mortality relationship (Buau and Samet, 2001). Changing local climate, topography, island–environmental and other factors make the underlying temperature–mortality relationship in a population more complex (Curriel et al., 2002; Hajat, 2006). Human health is affected by extreme temperatures over decades of time scales (Honda et al., 1998). The sensitivity of a population to temperature extremes changes over decades of time scales (Honda et al., 1998). Cold-related mortality in European populations has declined since the 1950s (Kunt et al., 1991; Lehle, 1998; Cano et al., 2005). Cold days, cold nights and frost days have become rarer, and annual trends indicate a reduction in winter mortality as homes are improved and use of heating, general better health and improved prevention and treatment of winter infections have played a major role (Cano et al., 2005). In general, population sensitivity to cold weather is greater in temperate countries with mild winters, as populations are less well adapted to cold (European Winter Group, 1997; Healy, 2003).

8.2.2. Wind, storms and floods

Floods are low-probability, high-impact events that can overwhelm human preparedness and resilience in a social organisation. Floods are the most frequent natural weather disaster (EM-DAT, 2006). Floods result from the interaction of rainfall, surface run-off, evaporation, wind, sea level and local topography. In inland areas, flood regimes vary substantially depending on local climate, topography and climate. Water management practices, urbanisation, intensified land use and forestry can substantially alter the risks of floods (EM-DAT, 2005).

8.2.2.2. Gender and natural disasters

Men and women are affected differently in all phases of a disaster, from exposure and risk perception, to preparedness, behaviour, warning communication and response, recovery, social aspects and impacts; emergency response, and ultimately to recovery and reconstruction. Women and children are particularly affected by floods and have been shown to result in increased domestic violence against women, and post-traumatic stress disorders in women (Brown and Marnell, 1988; Arbabian and McCormick, 2003; Gask et al., 2005). Women may make an important contribution to disaster reduction, often informally through participating in disaster management and acting as agents of social change. Their resilience and their networks are critical to household and community recovery (Enerson and Marnell, 1988; Arbabian and McCormick, 2003). After the 1998 Okaa cyclone, most of the relief efforts were targeted at men, whereas women controlled basic resources such as household grants and loans, resulting in improved self-esteem and social status (World Vision). Following a devastating 1992 flood in Pakistan in the Sindh region, women were involved in the reconstruction design and were given ownership of the homes, promoting their empowerment.

8.2.3. Drought and floods

Drought and floods are the two most common and severe forms of water-related disasters. Droughts are long-term reductions in precipitation or temperature, resulting in water shortages. Floods are caused by heavy rainfall or snowmelt, leading to rapid rises in river levels. Both droughts and floods can lead to significant losses in human lives and livelihoods, as well as damage to infrastructure and the environment. The management of water resources is crucial in mitigating the impacts of drought and floods. The effectiveness of drought and flood management strategies can vary depending on the specific context and the type of community affected. For example, in rural areas, interventions may focus on improving irrigation systems and access to water, while in urban areas, efforts may be directed at improving water supply systems and emergency response planning.
FLOODS AND STORMS

Floods are low-probability, high-impact events that can overwhelm physical infrastructure, human resilience and social organisation. Floods are the most frequent natural weather disaster. This infographic shows some of the causes and health impacts of floods, and shows how the number and severity of floods may increase in the future.

CLIMATE CHANGE

The majority of climate scientists agree that human activity is causing temperatures to rise around the world. As these higher temperatures free water that is usually frozen at the poles, sea levels are rising. Increased temperature and increased evaporation of water from seas and lakes can lead to increased rainfall and greater numbers of storms, cyclones and extreme weather events.

URBANISATION

The number of people living in cities is growing, particularly in low-income countries.

GLOBAL TRENDS

<table>
<thead>
<tr>
<th>Year</th>
<th>Low-income countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>100m people in towns or cities</td>
</tr>
<tr>
<td>1950</td>
<td>100m people in towns or cities</td>
</tr>
<tr>
<td>2005</td>
<td>100m people in towns or cities</td>
</tr>
</tbody>
</table>

DEATH & INJURY

Deaths recorded in disaster databases are from flooding and related injuries.

LATIN AMERICA

SOUTH ASIA

MICRONESIA

BAY OF BENGAL (particularly at risk from storm surges)

VULNERABLE PEOPLE

Those living in low-lying places (especially those with high density)

Poorest communities those with limited ability to escape

DEATH & INJURY

Deaths recorded in disaster databases are from flooding and related injuries.

VENEZUELA

MOZAMBIQUE

CHINA

1999

2000/2001

2003

30,000 DEAD

1,813 DEAD

130m AFFECTED

This would mean that a storm surge from a Category 3 hurricane (estimated at 3 to 4 m without waves) could be 6 to 7 m above areas that were heavily populated in 2004.

SEA LEVEL

Coastal regions are more vulnerable to flooding as sea levels rise.

EXTREME RAINFALL

Extreme rainfall can overwhelm urban areas and lead to severe flooding.

STORMS

Storms increase discharge into rivers and coastal regions.

EUROPE

SNOW MELT

Surface runoff

URBANISATION

1900

1950

2005

One-quarter of the world's population resides within 100 km distance and 100 m elevation of the coastline.

In the USA, lower-income groups were most affected by Hurricane Katrina in 2005.

In 1993, 1.8% of the population in the Gulf Coast of the USA was affected by Hurricane Andrew.

Such as children, the infirm, or those living in sub-standard housing.

FLOODS

Those living in low-lying areas with high density

VULNERABLE PLACES

THE NORTH SEA COAST

THE GULF COAST

THE NILE DELTA

GULF OF GUINEA

HEALTH IMPACTS

Improved warnings have decreased mortality from floods and storm surges in the last 30 years; however, the impact of weather disasters in terms of social and health effects is still considerable and is unequally distributed, particularly affecting women.

POST-TRAUMATIC STRESS DISORDER

Post-traumatic stress disorder

POST-TRAUMATIC STRESS DISORDER

Post-traumatic stress disorder

ANXIETY?

DEPRESSION?

CASE STUDY 1: BANGLADESH

If human activity continues to warm global temperatures, countries like Bangladesh are likely to see more flooding.

ASSUMPTIONS

Global temperature rise 2°C

Global sea level rise 0.9 m

Increase in monsoon rain 18%

Increase in monsoon discharge into rivers 10%

FLOODING DEPTH

People affected 4.8%

Flooded area 30–90 cm

CASE STUDY 2: USA

Deaths in industrialised countries indicate that densely populated urban areas are at risk from sea-level rise.

NEW ORLEANS (USA)

Mid-range estimate of 48 cm sea level rise by 2100 plus subsidence

DEATHS

... recorded in disaster databases are from flooding and related injuries.

POST-TRAUMATIC STRESS DISORDER

Post-traumatic stress disorder

ANXIETY?

DEPRESSION?
FLOODS AND STORMS

Floods are low-probability, high-impact events that can overwhelm physical infrastructure, human resilience and social organization. Floods are the most frequent multiple disaster. Floods from a wide range of causes and sources, with some areas being particularly vulnerable to the impacts of climate change. Floods may result from extreme rainfall, snowmelt, or other types of precipitation, such as heavy snow or ice. These events can cause severe damage to homes, businesses, and infrastructure, as well as loss of life and property.

FLOOD CAUSES

- Climate Change
- Urbanisation
- Sea Level Rise
- Storms
- Coral Bleaching

HEALTH IMPACTS

- Health & Injury
- Infectious Diseases
- Mental Health
- Toxic Contamination

FUTURE CHANGES

- Case Study 1: Bangladesh
- Case Study 2: USA

AIR QUALITY AND DISEASE

Air pollution is a significant contributor to health problems, especially in urban areas. Factors such as air pollution can increase the risk of heart disease, lung disease, and respiratory problems. Air pollution also impacts the environment, contributing to climate change and the destruction of forests.

CLIMATE CHANGE

- Renewable Energy
- Urban Transport
- Forest Fires

POLLUTION SOURCES

- Ozone
- Particulate Matter (PM)
- Other Toxic Gasses

MORTALITY AND MORBIDITY

- Climate Change
- Air Pollution

INVESTIGATING THE USE OF INFORMATION GRAPHICS TO EXPLAIN THE EFFECTS OF CLIMATE CHANGE ON HEALTH, COMPARED TO TEXTUAL PRESENTATION.
QUOTA SAMPLE
UK GENERAL PUBLIC
(AGE, GENDER, REGION)

NUMBER OF PARTICIPANTS: 926

RISK GROUP A:
STORMS & FLOODS

RISK GROUP B:
AIR QUALITY

RANDOMISATION

SF CONTROL (A)
157
SF TEXT (B)
129
SF GRAPHIC (C)
160

AQ CONTROL (D)
179
AQ TEXT (E)
142
AQ GRAPHIC (F)
166
<table>
<thead>
<tr>
<th>KEY</th>
<th>MEAN & 95% CI</th>
<th>ANOVA SIGNIFICANT (P < 0.05)</th>
<th>ANOVA NOT SIGNIFICANT (P > 0.05)</th>
<th>CONTROL CONDITION</th>
<th>TEXT CONDITION</th>
<th>GRAPHIC CONDITION</th>
</tr>
</thead>
</table>
RISK GROUP 1: STORMS & FLOODS
RISK GROUP 2: AIR QUALITY

Mean approval

KEY

- **Mean & 95% CI**
- ANOVA SIGNIFICANT (P < 0.05)
- ANOVA NOT SIGNIFICANT (P > 0.05)
- Control condition
- Text condition
- Graphic condition
RISK GROUP 1: STORMS & FLOODS

RISK GROUP 2: AIR QUALITY

mean
knowledge

80%
70%
60%

KEY

MEAN & 95% CI

ANOVA SIGNIFICANT (P < 0.05)

ANOVA NOT SIGNIFICANT (P > 0.05)

CONTROL CONDITION

TEXT CONDITION

GRAPHIC CONDITION
RISK GROUP 1: STORMS & FLOODS

RISK GROUP 2: AIR QUALITY

mean risk perception

KEY

- **MEAN & 95% CI**
- **ANOVA SIGNIFICANT (P < 0.05)**
- **ANOVA NOT SIGNIFICANT (P > 0.05)**
- **CONTROL CONDITION**
- **TEXT CONDITION**
- **GRAPHIC CONDITION**
mean knowledge (baseline)
mean knowledge
(time 2)
mean risk perception (baseline)
mean risk perception (time 2)
Age group:

- Control
- Text
- Graphic

Mean knowledge

- 80%
- 70%
- 60%
- 50%

Error Bars: 95% CI

- 18-27
- 28-37
- 38-47
- 48-57
- 58-67
- 68-77
Conclusions

- This type of box / arrow diagram can be used to communicate information on climate change health impacts in less time and more effectively than using text, for this audience.

- The technique might be used to effectively present other non-linear narratives.

- Non-linear information graphics like this could be particularly useful for younger audiences

- The study suggests that understanding the mechanisms for climate change health impacts could increase risk awareness.
Limitations

– Questions asked only test limited knowledge.

– Captive audience - doesn’t investigate whether information graphics also attract attention.

– Higher drop-out in experimental conditions.

– More in high socio-economic status groups than national average

– Only surveys internet users
Software:

Stills
- Presentation software
- Illustrator
- InDesign

Interactive
- Premiere
- Flash

Motion
- Processing / D3
- PhP / HTML5
- Other programming languages

Graphical presentation of data for health policy decisions: An exploratory online decision task experiment to measure effectiveness.

Information Design Journal 18:3.
This is a scenario based on real traffic and pollution data from 2008.

The "Planned measures" scenario models the effects in 2020 of integrating development plans and technological improvements to reduce vehicle emissions only.

The "-10% traffic" scenario includes the "Planned measures" as well as reducing the amount of traffic by 10% on all roads except highways.

The "50% electric cars" scenario includes the "-10% traffic" measures. Additionally, 50% of the cars are substituted with electric ones.

The "Local measures" scenario is a bundle of local measures, based on existing site-specific proposals for the city of Basel.

-10% traffic
- 50% electric cars
- Speed reduction
- Highway tunnel
- Encourage public & active transport

City of Basel
URGENCHE traffic policies
http://processing.org/
INTERNATIONAL PROSTATE SYMPTOM SCORE (IPSS)

INCOMPLETE EMPTYING
Over the past month, how often have you had a sensation of not emptying your bladder completely after you finish urinating?

FREQUENCY
Over the past month, how often have you had to urinate again less than two hours after you finished urinating?

INTERMITTENCY
Over the past month, how often have you found you stopped and started again several times when you urinated?

URGENCY
Over the last month, how often have you found it difficult to postpone urination?

WEAK STREAM
Over the past month, how often have you had a weak urinary stream?

STRAINING
Over the past month, how often have you had to push or strain to begin urination?
sliders

Source code: sliders

Built with Processing and Processing.js
INTERNATIONAL PROSTATE SYMPTOM SCORE (IPSS)

- **Incomplete Emptying**: Over the past month, how often have you had a sensation of not emptying your bladder completely after you finish urinating?
- **Frequency**: Over the past month, how often have you had to urinate again less than two hours after you finished urinating?
- **Intermittency**: Over the past month, how often have you found you stopped and started again several times when you urinated?
- **Urgency**: Over the last month, how often have you found it difficult to postpone urination?
- **Weak Stream**: Over the past month, how often have you had a weak urinary stream?
- **Straining**: Over the past month, how often have you had to push or strain to begin urination?
Clinical Review
State of the Art Review

Lower urinary tract symptoms in men

BMJ 2014;349:g4474 doi: http://dx.doi.org/10.1136/bmj.g4474 (Published 14 August 2014)
Cite this as: BMJ 2014;349:g4474

Get access to this article and to all of thebmj.com for 14 days.
Sign up today for a 14 day free trial.
Access to the full version of this article requires a subscription payment.
Please login or subscribe below.

John M Hollingsworth, assistant professor of urology1,2, Timothy J Wilt, professor of medicine3,4

Author affiliations

Correspondence to: T J Wilt tim.wilt@va.gov

Abstract

Benign prostatic hyperplasia (BPH) is a highly prevalent and costly condition that affects older men worldwide. Many affected men develop lower urinary tract symptoms, which can have a negative impact on their quality of life. In the past, transurethral resection of the prostate (TURP) was the mainstay of treatment. However, several efficacious drug treatments have been developed, which have transformed BPH from an acute surgical entity to a chronic medical condition. Specifically, multiple clinical trials have shown that a 5α reductase inhibitor, alone or combined with an α adrenoceptor antagonist, can significantly ameliorate lower urinary tract symptoms. Moreover, 5α reductase inhibitors, alone or combined with an α adrenoceptor antagonist, can reverse the natural course of BPH, reducing the risk of urinary retention and the need for surgical intervention. Newer medical regimens including the use of antimuscarinic agents or phosphodiesterase type 5 inhibitors, have shown promise in men with predominantly storage symptoms and concomitant erectile dysfunction, respectively. For men who do not adequately respond to conservative measures or pharmacological treatment, minimally invasive surgical techniques (such as transurethral needle ablation, microwave photothermolysis, and prostatic urethral lift) may be of benefit, although they lack the durability of TURP. A variety of laser procedures have also been introduced, whose improved hemostatic properties abrogate many of the complications associated with traditional surgery.

Footnotes
Lower urinary tract symptoms in men

BMJ 2014;349:g4474 doi: 10.1136/bmj.g4474 (Published 14 August 2014)
Cite this as: BMJ 2014;349:g4474

Get access to this article and to all of thebmj.com for 14 days.
Sign up today for a 14 day free trial.
Access to the full version of this article requires a subscription payment.
Please login or subscribe below.

John M Hollingsworth, assistant professor of urology1 3, Timothy J Wilt, professor of medicine3 4

Author affiliations

Correspondence to: T J Wilt tim.wilt@va.gov

Abstract

Benign prostatic hyperplasia (BPH) is a highly prevalent and costly condition that affects older men worldwide. Many affected men develop lower urinary tract symptoms, which can have a negative impact on their quality of life. In the past, transurethral resection of the prostate (TURP) was the mainstay of treatment. However, several efficacious drug treatments have been developed, which have transformed BPH from an acute surgical entity to a chronic medical condition. Specifically, multiple clinical trials have shown that α1 adrenoceptor antagonists can significantly ameliorate lower urinary tract symptoms. Moreover, 5α reductase inhibitors, alone or combined with an α1 adrenoceptor antagonist, can reverse the natural course of BPH, reducing the risk of urinary retention and the need for surgical intervention. Newer medical regimens including the use of antimuscarinic agents or phosphodiesterase type 5 inhibitors, have shown promise in men with predominantly storage symptoms and concomitant erectile dysfunction, respectively. For men who do not adequately respond to conservative measures or pharmacological therapy, minimally invasive surgical techniques (such as transurethral needle ablation, microwave thermotherapy, and prostatic urethral lift) may be of benefit, although they lack the durability of TURP. A variety of laser procedures have also been introduced, whose improved hemostatic properties abrogate many of the complications associated with traditional surgery.
Seeing is Believing
Information graphics: the visual transformation of data into understanding

FRIDAY, 11 JULY 2014
Visualising city energy policies

I've just finished an interesting project on urban sustainability, showing how different greenhouse gas reduction policies in cities around Europe and China could affect health and wellbeing. I was working for the UNICRIME project (Urban Reduction of Greenhouse Gas Emissions in China and Europe), funded by the EU under FP7. As part of the project, I wanted to draw some Sankey diagrams to show the different energy flows in the cities.

The academics in Stuttgart had already drawn a very detailed Sankey diagram using eSankey! Which was a great starting point for me.

Dr Will Stahl-Timmins

blog.willstahl.com
Twitter: @will_s_t

www.thebmj.com